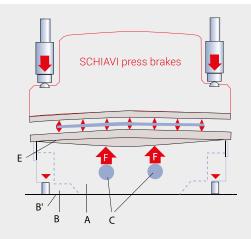
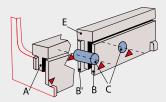


PRESS BRAKE

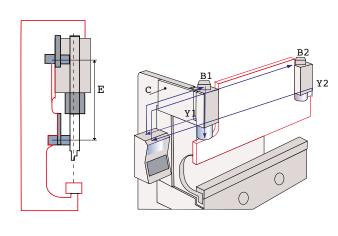

HIGH PRECISION


The Schiavi HFB press brake represents the most advanced model in the automation of the bending process. The HFBx model is a high performance press brake, characterized by a large stroke (500 mm) and the daylight opening (up to 1000 mm) between the beams. The wide daylight opening makes possible the production of boxed parts of large dimensions, while maintaining a high processing speed.

The HFBx is designed to facilitate the extraction of parts with a complex profile and it is particularly suited to robotic cell integration. Thanks to the high speed of the upper beam: approach (250 mm/sec.) and return (250 mm/sec.), HFBx press brakes allow to maintain high productivity due to the reduction of welding and grinding operations, typical of boxed parts of large dimensions.

COMPOUND LOWER BEAM

The compound lower beam is **patented internationally** and, while keeping the traditional layout of the side-mounted cylinders moving the upper beam, it allows to automatically compensate the deformation of the beams; hence assuring their parallelism. The distance between the upper and lower tools is constant along the entire length, and does not change during the bending process, assuring high quality results. Through the innovative use of an additional "**Gooseneck**", the distance between the beams is accurately measured, regardless of structural deflections. Since the 80's, the Schiavi patent stands for reliability and professionalism: **Made in Italy** and **technological innovation** to bend with absolute precision.


A - Beam core

B and B' - Side plates, welded on the sides

- **C** Two reaction pins, integral with the plates (the beam core rests on them)
- E Die holder beam welded on the beam core
- F Reaction forces

PRECISE CENTERING

The upper beam is guided by 4 pairs of bearings that slide, along the machine's sides, on tracks of hardened and rectified steel. The alignment and centering of the beams is guaranteed by the great distance between the upper and lower bearings (E). Both the optical scales (Y1 and Y2) are mounted on two plates (C) shaped as the side's throat and fixed to the lower beam. Moreover, the optical scales are connected to the CNC, allowing to control the oil flow through the servo-valves (B1 and B2).

During the downward of the upper beam, the optical scales record the movements: the difference between the data determines the automatic compensation and the consequent parallelism of the tables.

The HFBx press brake uses only hydraulic movements to generate the speed of the upper beam. The upper beam velocity is the strength of the HFBx: thanks to an inverter, the motor doubles the rotational speed to reach the upward speed of 250 mm/s; the speed change is guaranteed at 3 mm by the new accident prevention system.

TECHNICAL SPECIFICATIONS

		HFBx 100.30	HFBx 130.30	HFBx 130.40	HFBx 170.30	HFBx 170.40	HFBx 220.30	HFBx 220.40
Bending force	kN	1000	1300	1300	1700	1700	2200	2200
Length of the tables	mm	3100	3220	4200	3270	4250	3340	4320
Distance between columns	mm	2700	2700	3760	2700	3760	2700	3760
Throat depth	mm	405	410	410	410	410	410	410
Max stroke	mm	500	500	500	500	500	500	500
Max Open Height	mm	800	800	800	800	800	800	800
Working level height	mm	960	960	960	960	960	960	960
Table width	mm	90	90	180	180	180	180	180
Nr. of intermediates	n°	15	15	21	16	21	16	21
Approach speed	mm/sec	250	250	250	250	250	250	250
Working speed min max	mm/sec	1-9	1-9	1-9	1-9	1-9	1-9	1-9
Return speed	mm/sec	250	250	250	250	250	250	250
Motor power	kW	11	15	15	18,5	18,5	22	22
Weight	kg	11200	11700	16000	16500	18100	20600	23000
Max length	mm	4200	4200	5250	4200	5250	4300	5350
Width	mm	1900	2150	2150	2150	2150	2250	2250
Height	mm	4050	4050	4050	4260	4260	4300	4300
Shipping height	mm	3600	3600	3600	3800	3800	3850	3850

